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Estimation of the Larger Mean

by

Ishwari D. Dhariyal, Indian Institute of Technology, Kanpur, U. P.

Eddward J. Dudewicz, The Ohio State University, Columbus, Ohio

Saul Blumenthal, University of Illinois, Urbana, Illinois

Abstract

In the present paper estimation of the larger of two normal means is studied.

Two new estimators are added to the class of possible estimators of the larger

normal mean, namely, the maximum probability estimator and the iterated bias

elimination estimators. If the magnitude of the difference between the two

population means is not close to zero (as evidenced by its strongly consistent

estimator, the magnitude of the difference between the two sample means) a

suitably chosen maximum probability estimator is seen to be best as regards

both bias and nean-squared error.

1. Introduction

I Let Xi, ... ,Xin be a random sample of size n from a normal population with2

mean 4, and variance a , i = 1,..,k (>2). Let "[I] <  " [kI be the
| 2ordered unknown means and suppose - is known. The estimation analog of the well-

1known ranking and selection problem [see Bechhofer, Kiefer, and Sobel (1968)]
has been the topic of inquiry by Alam (1967), Blumenthal (1975, 197t)), Blumenthal

1 and Cohen (1968), Dudewicz (1971. 1972, 1973, 19T'6) and others. Once the

- decision has been made as to which of the k populations has the largest mean,

I
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it is natural to ask, "How large is this largest mean?" For two

examples of application of estimation of thi larger normal mean, the reader is

referred to Blumenthal and Cohen (1968).

In this paper we study this problem and attempt to enlarge the class of

estimators of the larger mean. In section 2 we investigate, mostly numerically,

the behavior of a class of estimators called Maximum Probability Estimators

(MPE's) introduced by Weiss and Wolfowitz (1967). Dudewicz (1973) first gave

the MPE's of the ranked means. In section 3 a new class of estimators called

Iterated Bias Elimination Estimators (IBEE's) are introduced and investigated.

A comparison along the lines of Blumenthal and Cohen (1968) is made in section L.

2. Maximum Probability Estimators

Definition (Weiss and Wolfowitz). Let 9 be a closed region in the

m-dimensional Euclidean space f, A e- r , where X is a closed region such that

every finite boundary point of e is an inner point of F. For each n let X(n)

denote the (finite) vector of random variables of which the estimator is to be

a function. Let K (x,O) be the density of X(n) with respect to a sigma-finiten

measure. Let R be a fixed bounded set in IRm and let k(n) = (k (n),...,km(n))

be a sequence of numbers such that k.(n) 4- (n .-o for each i. Let d =

(dl,...,dm) and d - R/k(n) = ((z1 ,..., Z) EA: d1-Yi/k1 (n) = zi, i

(y1,...,y) E RI. Then Zn is am MPE with respect to R and k(n) if euals

a d E 5 such that

K S(x,e)de sup_ J K(x,O)dO.(2)d-R,/k(n) t t-R/k(n)

Now let X1 '1.'.,X denote the sample means. Let in the above definition

I
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x(n) - (x[ll,...,x[k),

I k

k '*: =i- '[]''k = [ k ]

*={~i ~ K.i...s) Eli 7 (x11...,x 1  r ree

n ... X k;

with respect to Lebesgue measure on where X are ordered

sample means. (Note that Kn (X, a) 0 1ff x_< <xx.) Let

r -* k(n)

and

R = (-rl/2,r1/2) X(-r 2/'2,r2 /2)X ... X(-rk/2 , rk '2)

....fl t. ~~ +" -' , . 1,..[
rl,...,rk being positive real numbers. Define ij[I

Aflh1.ffi

We know that

] (xl ....xk vi.) (./a/) L T,
[. [k] C-sk i=1

where Sk is the set of permutations on integers 1,...,k and 4(s) denotes the

I standard normal density function. With d R(i) .F(x~) - 1)n and

t i =x + ai/. we find from the definition that t = (ti,..., t ) is an MPE for

S= ([,. if a = (al,...,a k ) are chosen so as to achieve

k
I sup E 1 {9(%(i)-ai '- ri/2) " *(d.()-a.- 1/2)} (2.2)

a V C S iAl

where @() denotes the distribution function of a standard normal variable.

For values of k up to about 20 and using the observed values of di s

-..
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we can find al, ... ,a k by utilizing some function maximization (minimization)

algorithm such as that of Nelder and Mead (1965).

In the rest of this section we investigate numerically the MPE's of

(P[ 1[i[2), that is, for the case k = 2. For the values of the difference

between the larger and the smaller sample means considered, after a preliminary

analysis, we found that we could treat r 1 1 r 2 =0.5, 1.5, and 5.0 as small,

medium, and large respectively for the study. Thus we have nine pairs of

(rl,r 2 ) to look at. We found numerically that for d < win (r 1 3 r 2 ), a =2 =/

maxi mi ze

2

g(a,,a2 ) = iT {9(dNi) - a i + r,/2) - *(do(i) - a, - ri12)
2) S 2 i=l

{1a + rj/2) - #(a,~ - rl/2)} (Ca2 + r,/2) - #( - r~/Y

41(,- d1 + r, 1
2 ) - * (a, -d-r, /2)} {O(a 24-d~sr 2 /2) - 6(a 2 +d-r, 2 )}

where d = .(x 2 -xl)/a. This observation was checked with rl,r 2 changing in

steps of 0.1 from 0.1 to 3.5. Redefining t I and t 2 as t 1 = x1 + a,//,f and

t 2 =x 2 - a2a//i we can write g(al,a2 ) as

g(al,a) * ea 52 (a,~ - rl/2)} *(a2 + r22 - 4(a2 -l2

+ {S(a,.d4r1 ,/21 - *(a,-d-r1 /2)} {j(a 2-d+rI/2) - *(a-d-rj2}2 (2.3)

and now a = a2 = d/2 maximize g(al 3 a2 ) for d < min (rl,r 2 ). Table 1 gives the

values of (a 1 ,a 2 ) for the above nine pairs of (rl,r9 ) for d s 0.1(0.1)3.5. We

tabulate for only six (r1,r) pairs because of the subscript symmetry in

(2.3) and hence the other three columns carb e deduced from this table itself.

For these calculations the Nelder-Mead (1965) simplex method was utilized. For

isI



each of the nine (rl,r 2 ) pairs and each value of d, it was verified that

g( 0 +1o-7 , a + 10-7) < g(al O , a ) where (,, o 0) is the calculated

value. Thus the values reported are correct to seven decimal places.

Bias. Now without loss of generality, we consider the MPE's of 4[2]

only. For given rl,r 2, the MPE of g[2] is given by

t 2 = t 2 (r 1 r 2) [2 - ' a2 (z, r1, r 2 )

where i = a/, and Z = (X[2) - XI ) / 2 . Therefore, the bias is

B(t2) - B(t 2,w, r)

=B( (2]) - .K 0 a2(z, rlr 2)f(z, w, )d (2.4)

where B(X[) denotes the bias of X as an estimator of and
[2] [2]

f f(z, w, T r2 {40f2(z -0)/r) + 4GP(z4.)/r)}, Z > 0 (2.5)

is the density of Z withi = (M[ 2 1 - [l] ) / 2 " Also from Blumenthal and Cohen

( 1968) we have

B(Xr2j e-2'2-2(-,f .'). (2.6)

From (2.4), (2.5), and (2.6) it is clear that B(t2, U t) = T B(t 2 , #,, 1).

Therefore, we take T = 1 in the following calculations and the values reported

are in units of r. Values of B(X[2 1) are given in Blumenthal and Cohen (1968);

we independently verified these values.

Now, from Dudewicz (1973) we know that 0 < a 2 < 2Z. Also 4 .G/ (z40)) <

4Gff2(z-i)). Therefore, if we approximte fa 2 (z, r1, r 2 )f(z, w)dz by

a 2 (z, r., r 2 )f(z, *)dz, the error due to this truncation is
0
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I.

E= a2 (z, r,, r2 )f(z, w)dz

< [e,,./ z 4(Czt))iz.
"M

In order to bound ET by c, it suffices to find an M M (w) such that

z 4Q/Th(z-w))dz <C c.

M (a)

Prior to the numerical evaluation of the integral I = a(z r,, r ':f(z, u',dz

a study of the function g(z, rI, r' w) a (z, r1, r2)f.z, w revealed that

this function has a sharp peak (possibly a non-differentiable point) in the

interval [0, M (m)]. Three typical functions are graphed in Figure 1. This fact

is an indication that one should evaluate the integral . in two partL., namely,

in intervals [0,a] and [a,b., where a = a(,) is the point such that

a2(z, rl, r2) = z for z < a [note that a turns out to be the same point where

*2 (z, rV r2 ) starts decreasing] and b - b(u) is such that &,"Z, rl, r 2 ) -

for z - b. It was found that in each case considered I < 14, (a). Since for

z hb, a_(z, rl, r 2) <,C.

r2-2ra (z, r1, r2)f(z, u)dz <_ €

Hence we used Gaussian quadrature formula [see Stroud and Secrest (1966)]

a b

a.2'(z, r1 , r2 )f (z, W)dz + a2(z, r. ' r12)C?, dz

to approximate
CO

r a0 z, rl, r 2 ')f(z, *)dz.

'0 "
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To control the error due to quadrature, for each (rl. r pair each of

the integrals

r(z, rl , r 2 )f(z, w)dz

and
I2 / , r2 )f(z, m)dz

was evaluated in 3, 5, 7, or 9 subintervals using 64 and 128 point Gaussian

quadrature formulas. The criterion used to stop subdividing each subinterval

was that the two values of the integral I. obtained using ,i and 128 points

respectively for a subdivision of the subinterval differ by no more than 0,

i = 1,2. Thus our approximation involves an error due to quadrature plus an

error due te truncation which is bounded above by c + c*. We used e = IC'. r
Thus we have

B(t) =B(X[ 2 ]) -Il-I2

Mean-sauared error (ISE). We have

MSE(t2 ) = MSE(t2 ,j, )

= MSE([ 2 ]) +  [ 2a.2 (Z, r 2) -2 r(zw)a2 (Z, r., r.)

ii =MSE(X[21 ) -I 2 ( '-, r,, r2  - a.7(a r1. r2 )'jf(z,

klso
[]2 -

4 has been tabulated by Blumer.thal and Cohen (1968; we independently verified

these values. Again, it is clear that MSE(t, , . - MSK(t2 , - i). '11 the

[
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calculations run parallel to those for the bias except that new bounds

are found to approximate the integral in (2.7).

Tables 2 and 3 below give the bias and MSE respectively of tjr1 , r2r1' r

We see that smaller values of r1 , r 2  give rise to smaller Ibiasl and smaller

MSE.

3. Iterated Bias Elimination Estimators

Consider the case of k = 2 normal populations with means i n and 4, ad a

comnon known variance 2 . Let x* - X 2  and let B(1) (,n denote the bias

of x'l as an estimator of t[23" Let B' 1)(,) denote a consistent estimator

of B*()(). Define () *()() which has a bias of B*(2)(U) as

an estimator of 4[21. Let B2)() denote a consistent estimator of 3(?)%) .

Continuing the process, let X'' = Am 2,3,.... In this

section we investigate the class of estimators tx( ); m = m ,2,...) of p 1 2 ].

Let tC; r2Y2 , /-r, andCm))=

2 -

e m2/ 2(m+l). 2 4 , r /.-T r), m = 1,,.... We estimate * (which appears

in B (k.) through the continuous function C* (a), m 1,2,...) by its

strongly consistent estimator Z. That is, e(r)(m) = B*(-)(Z).

Definition. X* ( m ) is called the m-th IBEE of [21' m

Lemma. For m = 1,2,...

E C * (Z) = C , c*(O) :

[
* =



A
Proof. The proof is straightforward involving just the routine evaluation

J of integrals of type
2t

e f(b + Cl)dz + z *(a 2 z)4(b 2 z + c2)dz.0 "0

Theorem. For m 1,2,...

m-1 -(r )
B Eo ( , ( +l~r=0"

I Proof. From Blumenthal and Cohen (1968) we know that the theorem is true

for m = 1. Suppose it is true for m = k. Then, by definition

*(k+i) *(k) k-i k *(r),x- z (-I) k )C* (Z).

Therefore, 

r=O

1* Bk)w) k-ik (r

B*(k+I)(w) - s ()r ( ) )
r=O

k-i k-i
(-i )r( k *(r') -i k [c*(r+l)

O r) - 1 )(r+l) (w) - c
r=O r=O

k _,rk+l] )c*(r)
E l~ r+ 1  ()

r=0O

Thus, the theorem is true for m = k+l. The proof now follows by induction.

Corollary. For m - 2,3,...

*(.) -x m -I) r. m .C*(r)
r=O P

A numerical study as to the behavior of B*(m(w) as m increases shows that

for smaller values of W B*(M) (w) decreases as m is increased. Pnhe behavior

is reversed for larger values of t. Table I4 gives for In = 1,2,...,30

9
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b(m) max IB (w) *

which reveals that for values of m and w considered X is the minimax

biasI IBEE.

4. Comparison of Estimators of ji±2]'

In this section we make comparisons between the "best" estimators of

Blumenthal and Cohen (1968), the "best" MPE and the "minimax" lbiasi IBEE

as regards their bias and MSE. From tables and graphs of Blumenthal and

I Cohen we find that with respect to the bias the estimator

( ( 1x2 )/2 if <
. H(l) =

xNP if z

seems to be the "best" anong all the estimators considered and with respect to

MSE, the estimator

i 6 -- + [e~z/.P +-XI+X2a - +--[O -- 2 -r', + -
1 2 2 -

seems to have an advantage over the other estimators. From section 2 we know

that among the nine MPE's considered t2(0.5,0.) is the 'best' both in case of

bias and MSE. In Tables 5 and 6 we give the bias and MSE respectively of the

I. four estimators 68(), 6p, t 2 (O.5,O.5), and X* (18) and compare them graphically

1 in Figures 2 and 3. (Note that the MSE(X*(18)) was calculated using Monte Carlo

techniques.)
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Table 4: Values of b(m) = max IB*(m)(&)! theo=0.0(0.1)5.0

maximum Jbiasl of m-th IBEE.

m b(m) m b(m) m b(m)

1 0.5642 2 0.3305 3 0.2761

[4 0.2499 5 0.2338 6 0.2227

7 O.P2144 8 0.2079 9 0.2027

10 0.1983 11 0.1945 12 0.1913

13 0.1885 14 0.1860 15 0.1832

1c 0.1840 17 0.1822 18 C.1536

19 0.1879 20 0.2736 21 0.2047

22 1.4915 23 0.3366 24 {4.3284

25 1. 0571 26 16.4563 27 1. .1254

?8 105.9889 29 23.4225 30 )09.0409

14
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Table 5: Bias Comparison

i
, H{(1) 1 t2 (o.,o.5) x(18)

0.0 0.2076 0.7979 0.3046 0.1536
0.1 0.1138 0.7019 0.2113 0.0669
0.2 0.0324 0.6138 0.1314 0.0016
0.3 -0.0367 0.5335 0.0644 -0.0389
0.4 -0.0938 0.4609 0.0099 -0.0655
0.5 -0.1392 0.3956 -0.0329 -0.0734
o.6 -0.1734 0.3374 -0.0651 -0.0746
0.7 -0.1972 0.2858 -0.0875 -0.0621
0.8 -0.2114 o.22404 -0.1016 -0.04146
0.9 -0.2169 0.2009 -0.1084 -0.0280
1.0 -0.2151 0.1667 -0.1095 -0.0219
1.1 -0.2071 0.1372 -0.1059 -0.0062
1.2 -0.1942 0.1122 -0.0990 0.0016
1.3 -0.1779 0.0911 -0.0899 0.0126
1.4 -0.1593 0.0733 -0.0795 0.0016
1.5 -0.1397 o.0586 -0.0686 0.0187
1.6 -0.1200 0.0465 -0.0578 0.0038
1.7 -0.1010 0.0366 -0.0478 0.0059
1.8 -0.0833 0.0286 -0.0386 0.0004
1.9 -0.0674 0.0221 -0.0306 -0.0010
2.0 -0.0535 0.0170 -0.0238 -0.0109
2.1 -0.0417 0.0129 -0.0181 -0.0057
2.2 -0.0318 0.0098 -0.0135 -0.0026
2.3 -0.0238 0.0073 -0.0100 -0.0228
2.4* -0.0175 0.0054 -0.0071 -0.0177
2.5 -0.0125 0.0040 -o.0o50 -0.0104
2.6 -0.0089 0.0029 -0.0035 -0.O003
2.7 -0.0062 0.0021 -0.0024 -0.0076
2.8 -0.0042 0.0015 -0.0016 -0.0139
2.9 -0.0028 0.0011 -0.0011 -0.0024
3.0 -0.0019 0.0008 -0.0007 -0.0174
14.0 -0.0000 0.0000 -0.0000 -0.0015
5.0 0.0000 0.0000 -0.000o o.ooo4
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Table 6: MSE ComparisonI

f (1 6 t (0.5,0.5)HP2

0.0 0.7862 I.2182 0.8529 3.0538
0.1 0.7633 1.0455 0.8109 3.0725
0.2 0.7729 0.9067 0.8014 3.0582
0.3 0.8076 0.7970 0.8167 2.9850
o.4 0.8609 0.7113 0.8495 2.9157
0.5 0.9261 0.6L5 3  0.8933 2.7558
o.6 0.9974 0.5989 0.9425 2.6158
0.7 1.0694 0.5674 0.9920 2.4251
0. 8 1.1375 O0 5520 1. 0382 2. 2187
0.9 1.1980 0.5496 1.0782 2.00661.0 1 .2479 O. 5590 1.11i02 i. 8548
1.1 1.2854 0.5795 1.1-334 1.7210
1.2 1. 3098 0.6070 1.1478 1.5996
1.3 1.3212 0.6417 1.1538 1.h4964
1.4 1.3205 0.6794 1.1526 1.4021
1.5 1.3093 0.7189 1.1456 1.2870
1.6 1.2897 0.7583 1.1342 1.1914
1.7 1.2639 0.7956 1.1200 1.1325
1.8 1.2342 0.8305 1.1044 1.0869
1.9 1.2028 o.8615 i.o885 1.067 3
2.0 1.1715 o.8888 1.0731 1.0432
2.1 1.1417 0.9120 1.0590 1.0229
2.2 1.1144 0.9315 1.0466 1.O163
2.3 1.0904 o.4474 1.0360 1.0130
2.4 1.0699 0.9601 1.0272 l.Olb9
2.5 1.0529 0.9702 1.0201 1.0194
2.6 1.0391 0.9780 1.0146 1.0207
2.7 1.0284 0.9840 1.0103 1.0213
2.8 1.0202 0.9885 1.0072 1.0206
2.9 1.0140 0.9918 1.0049 1.0185
3.0 1.0096 0.9942 1.0033 1.0155
4.0 1.0001 0.9999 1.0000 0.9979
5.0 1.0000 1.0000 1.0000 1.0024
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Figure 1: Graphical investigation of behavior of MPE's. f, the density of Z;

a the adjustment in Xr2 j given by MPE of [2]; and g a2f are&2'

plotted against Z. For all (rl,r 2) pairs considered, 'F0, (b), (c)

represent the typical plots when w 3.C, ., 0.0 respectively.
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Figure 2: Comparison of estimators of r[21 with respect to their bias.
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Figure 3: Comparison of estimators of 4[1with respect to their MSE.
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